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Overview 
 
 We are trying to develop a weathering model for polygonal meshes through the 
simulation of particle-model interactions.  We will be taking two seemingly unrelated 
concepts, photon mapping and fluid simulation, to try to provide a pleasing rendition of 
aging and weathering, which will be represented on the meshes both in textural and 
geometric changes.  Particles in the simulation will be controlled by physical mechanics, 
reflection, gravitational forces, and an optional vector field for fluid interactions. 
 
 
Photons 
 

The weathering is performed by the interaction of particles with the models in the 
program.  We will be calling them photons, as some of the motivation behind the project 
involved using particles in a manner similar to photon mapping.  The photons will be 
projected through the world, affected by various forces, from gravity, initial velocity, or 
the vector field.  Collisions with model faces will result in both geometric perturbations 
as well as adjustments to residues, both on the faces, and on the particles themselves. 
 

Residue is just a measure of some kind of contaminant on a surface/particle.  
There are structures for dirt, rust, and moss, but only moss is currently used, to 
demonstrate how it works.  A surface can be initialized to have specific residues, as a 
photon can be initialized with some residues.  Currently, faces start with no residue, and 
photons start with some moss, and so as photons move around, they deposit some moss.  
Photons also will pick up residue from the surfaces they encounter.  The residue structure 
also records collision counts for given faces, for testing. 
 

Photons can be fired from the camera, to observe their movement.  In this way, 
there can be a large number of active photons at once.  They will move around in the 
world until they either land on a face or leave the extents.  Every time a model-photon 
collision occurs, there is a chance that the photon may land on the face, rather than 
reflect, in which case, its residue is deposited and the photon is removed.  The amount of 
geometric distortion from a photon is determined by the velocity of the photon as well as 
the angle of striking the surface, in addition to a hardness parameter for the surface. 
 
 Photons can also be batch-launched, which is far more efficient for performing 
the weathering.  Further controls will be discussed later. 
 



 
Models 
 
 The program takes .PLY models as input.  There can be any number of models 
active at once, and in fact, the main processing constraint is the number of polygons, not 
the number of models.  As a result, a series of low detail models will perform better than 
a single detailed model. 
 Currently, models cannot be output after weathering, but this could be 
implemented fairly easily through freely available libraries for the .PLY file format (or a 
future group member could write their own routines). 
 Models are pre-rendered into a display list, which needs to be recompiled 
whenever there is a change made to the model.  Thus, it is far quicker to perform multiple 
photon simulations before recomputing the model’s display list, though it is possible to 
configure it to refresh on every change, when using the camera photon launcher (see 
configuration variable VAR_AUTO_REFRESH). 
 Models can be imported into the simulation through the console, by entering 
“import_model <model file>”.   Multiple models can be in the simulation at one time, but 
this can potentially reduce performance somewhat.  There is no simple way to remove a 
model that has been imported, besides restarting the program. 
 
Configuration Variables 
 
 There are a series of global configuration variables stored within the CONFIG 
class, which can be modified several different ways: they can be set with the console 
(discussed later), or various keys can be bound to affect particular variables (also 
discussed later).  Default values for these variables are set in config.cpp, with the 
function init_var(), which is also used to initialize the variables to contain extra meaning.  
For example, a variable can be set so that whenever its value changes, the models’ 
display lists are recompiled, along with other settings that are explained in more depth in 
CONFIG::init(). 
 Pressing F3 will display a list of all the active variables and their current values. 
 
 
 Descriptions 
 
VAR_DRAW_FPS  Shows frames-per-second. 
VAR_DRAW_AXES  Shows X/Y/Z axes. 
VAR_DRAW_EXTENTS_MODE Cycles through visualization of world extents. 
VAR_DRAW_MESSAGES  Shows messages. 
VAR_DRAW_VECTORS_MODE Cycles through visualization of vector field, 

using the simple method of rendering each 
vector as a ray. 

VAR_DBINS   Shows bins. 
VAR_DTRAILS   Show trails on particles. 
VAR_SHOW_KEYS  Show key bindings. 
VAR_SHOW_VARS  Show variables and values. 
 
VAR_DEBUG_STEP When set, the simulation will pause after every 

frame. 



VAR_FAST_MOVE When set, the user’s camera will move  ten times 
faster. 

VAR_FORCE_NEW_LIST When set to true, the next frame  will recompile 
all display lists. 

VAR_FREEZE_PARTICLES Particles will perform steppin g and collision 
calculations but will not move from velocity 
(for debugging). 

VAR_RUN_SIMULATION When set, photons will be allowe d to step. 
VAR_DEBUG_LOG When set, regular output is directed to 

err_log.txt (warnings and errors are still 
output to errors.txt in either case). 

VAR_SINGLE_VIEW When set, only the active viewport is rendered 
(as opposed to the four-viewport splitscreen). 

VAR_CAMERA_LOOK When set, the user does not need to  hold down 
the camera look key to adjust the view. 

VAR_AUTO_REFRESH When set, any change to a model re sults in 
immediate recalculation of display list. 

VAR_IN_SIMULATION  While in a batch simulation, thi s is set. 
VAR_PHOTON_ELASTICITY The maximum elasticity of a p hoton when it 

reflects. 
VAR_PHOTON_GRAVITY The bias of gravity towards phot ons. 
VAR_PHOTON_VF_BIAS The bias of the vector field tow ards photons. 
VAR_PHOTON_CONSERVE Whether photons conserve moment um or not 

(velocity is zeroed out for each frame, so 
there is no acceleration if set to false – this 
is recommended for use only with positive 
vector field bias). 

VAR_FIRE_STRAIGHT When photons are fired from the c amera and this 
is set to true, the photons will not be 
affected by gravity until they collide with a 
polygon. 

VAR_SIM_X0, Y0, etc. Range of source for batch phot on simulation. 
VAR_SIM_WAVES The number of waves of photons to be run when a 

batch simulation is executed. 
VAR_APPLY_ALL Certain actions can be applied to jus t the 

selected model or to all models (e.g. model 
subdivision) – this variable determines which 
behavior to use. 

VAR_SPREAD_TYPE Determines how batch photons are fi red.  Values 
can be ‘ST_RANDOM’ (0) – photons start at a 
random point within the starting field, 
‘ST_GRID’ (1) – photons start regularly spaced 
within the field, or ‘ST_JITTER’ (2) – photons 
start regularly spaced within the field with a 
slight jitter. 

VAR_INCREMENTAL_SUBDIV When set, subdivision is per formed in single 
steps, rather than subdividing to the max for 
each wave. 

VAR_GIANT_BIN Must be set before loading models, th is will 
create a bin to encompass the entire model. 

VAR_SUBDIV_TARGET The target size of the smallest p olygon to be 
subdivided. 

VAR_SUBDIV_ONLY Used to create a subdivision-only w ave of 
photons that leave no residue or affect 
geometry, but rather just determine where 
subdivisions are needed. 



VAR_DRAW_VECTORS_MODE2 Better visualization of vect or field, using 
IBFV planes. 

VAR_NORMALIZE_IBFV Determines if IBFV rendering use s normalized 
vectors. 

 
 
Bins 
 
 Particles moving through the world collide with polygons.  However, to make 
collision detection feasible, there is a binning system that divides the world based on 
position, so that a particle needs to only check its current bin and neighboring bins to see 
all the polygons that could potentially cause a collision.  As polygons are moved and 
deformed, the bins in which they reside can change. 
 A limitation of the current scheme is that a polygon’s bin is determined entirely 
by the position of its first vertex.  Therefore, if the polygon’s face is significantly wider 
than the size of the bins, it is possible that it won’t be detected correctly by particles.  
This is generally not a problem when you have fairly consistently-sized polygons in a 
model, but starts to be a problem when you’ve got multiple models of different sizes in 
the same world.  This problem could be overcome with a different scheme (perhaps one 
with hierarchical bins), but with the current system there are still workarounds.  A model 
with significantly larger faces can be selected and subdivided until it more closely fits the 
bin size.  This must be done with care, however, because as the polygons get 
progressively smaller than the bins, the benefits of the binning system are reduced.  There 
seems to be the most efficiency when polygons are somewhere between 1/4th and 1/10th 
of a bin’s width.  Of course, when simulations are run and subdivisions occur, bins are 
automatically reduced in size slightly, to attempt to keep things running more smoothly. 
 To effectively disable binning, thereby sacrificing speed for complete accuracy, 
set the VAR_GIANT_BIN variable to true before loading any models.  Then, upon loading a 
model, the bin system is made to encompass the entire model such that every polygon is 
either in the same bin or a directly adjacent bin (which has the equivalent effect).  Using 
this with a high polygon model is effectively impossible, as simulation time will increase 
past the order of days, but with special cases may be appropriate.  
 
 
Controls 
 
 The camera is controlled with the mouse.  When camera look is enabled (see 
Configuration Variables), or when you are holding down the spacebar, moving the mouse 
will rotate the camera.  By holding down different combinations of the left and right 
mouse buttons, the camera can be moved along different planes relative to the camera’s 
look direction.  When fast move is enabled, the camera will move significantly faster, 
which is useful for larger models. 
 There are many keys mapped to actions, which are defined in control.cpp.  
Pressing F1 will show all the current keys and a short description of what they do. 
 
 Descriptions 
 



ACTION_NULL   Do nothing. 
DO_QUIT   Exit and cleanup. 
 
TOGGLE_CONSOLE  Bring down the console, for enterin g commands. 
TOGGLE_DPOLY  Toggle drawing of polygon faces. 
TOGGLE_DWIRE_MODE  Toggle drawing of wireframe edge s. 
TOGGLE_DNORMAL  Toggle drawing of face normals. 
TOGGLE_FAST_MOVE  Toggle camera movement speed. 
TOGGLE_HIDDEN_LINE Revert to wireframe mode, but wi th hidden lines 

occluded. 
CYCLE_GRID_MODE Display different grid modes.  When  in 

perspective view, these are 3D grids along 
different axes.  When in orthogonal view, it is 
a single, resizable grid. 

TOGGLE_DRAW_AXES  Toggle drawing of axes. 
CYCLE_DRAW_EXTENTS_MODE Cycle through extents visua lizations. 
TOGGLE_MESSAGES  Toggle drawing of messages. 
TOGGLE_DRAW_VECTORS_MODE Cycle through simple vecto r visualizations. 
TOGGLE_DPOINTS  Toggle drawing of points. 
TOGGLE_DBINS  Toggle drawing of bins. 
TOGGLE_DTRAILS  Toggle drawing of particle trails. 
TOGGLE_LIGHTING  Toggle lighting on models. 
TOGGLE_DSPAWN_BOX Toggle drawing of particle spawn box (particles 

are created inside it). 
CYCLE_VISUALIZATION Cycle through various polygon v isualization 

modes.  The color of faces are modulated based 
on certain parameters.  0: Default brown with 
residue shown.  1: Normals directly translated 
into rgb.  2: Curvature.  3: Offset magnitude 
(offset from original position due to particle 
collision).  4: Offset vector.  5:  Collision 
count. 

 
RUN_SIMULATION  Run some number of waves of the sim ulation. 
STEP_PHOTONS_ONCE Allow a single step of the simula tion for all 

photons. 
TOGGLE_RUN_SIMULATION Allows photons to step freely  (apart from 

running a simulation). 
SPAWN_PHOTON Create a test photon from the camera’s  position 

and orientation. 
TOGGLE_FIRE_STRAIGHT When set, photons will fire st raight out of the 

camera and will not be affected by gravity 
until a collision. 

TOGGLE_AUTO_REFRESH  Toggle whether models will ref resh immediately 
upon collisions. 

 
ZOOM_IN/OUT   Zoom within orthogonal views. 
GRID_UP/DOWN  Change grid size in orthogonal views.  
MOD_CAMERA   When held down, the mouse rotates the camera. 
TOGGLE_CAMERA_LOOK When toggled, the mouse rotates the camera. 
 
TOGGLE_SHOW_KEYS  Toggle display of key bindings. 
TOGGLE_SINGLE_VIEW Toggle between single view and f our viewports. 
TOGGLE_SHOW_VARS  Toggle display of configuration v ariables. 
BIN_DOWN Reduce bin sizes (requires refresh of all 

models). 



REFRESH Recalculates model parameters, chooses bins , 
and creates display lists. 

FULL_SUBDIVISION  Perform subdivision on all polygo ns. 
FORCE_SUBDIVISION Perform subdivision on only neces sary polygons 

(i.e., polygons that have been collided with 
test photons that require subdivision). 

INVERT_MODEL In case a model’s faces are inside-out , this 
will reverse them. 

TOGGLE_APPLY_ALL Toggle whether actions should be a pplied to all 
models or only selection. 

CYCLE_MODEL_SELECTION Choose selected model. 
TOGGLE_INCREMENTAL_SUBDIV Toggle incremental subdiv ision.   
 
VECTOR_FIELD_TEST  Distort model vertices from vect or field. 
TOGGLE_DEBUG_LOG Toggle whether regular output is s ent to 

err_log.txt. 
SCREEN_SHOT   Save the current screen into a .BMP f ile. 
 
SUBDIVIDE_FIELD  Perform subdivision on the vector field. 
TOGGLE_DRAW_VECTORS_MODE2 Cycle through IBFV vector  field 

visualization. 
DYE_TEST Toggle visualization of dye in IBFV vector  

field visualization. 
TOGGLE_NORMALIZE_IBFV Toggles the use of normalized  vectors in the 

IBFV rendering.  This also refreshes the face 
data used by the IBFV structure. 

 

 
 
Viewports 
 
 The user can view one or four viewports at once.  When in four-viewport mode, 
there is a single projection viewport and three orthogonal viewports, each of which is 
directed along a different axis.  Certain display settings are set per viewport, such as the 
rendering of polygons or vertices, so to select which viewport is active, click the mouse 
somewhere inside that viewport.  Once active, any viewport-centric display changes will 
occur only within that viewport.  Hitting F3 will toggle between showing the four 
viewports, and showing just the viewport that was most recently selected. 
 
 
Selection 
 
 A few actions can be applied to either one model or all models within a scene, 
depending on the state of the configuration variables.  If only a single model is to be 
affected, then the selection of this model can be cycled through all the available models.  
When cycling through, the name of the model selected is displayed in a message (there is 
no other visual cue, unfortunately). 
 The actions that are affected by a selection are the performance of a full 
subdivision and the inversion of a model’s faces.  Other actions can be constrained in this 
way by modifying how they are handled when triggered in control.cpp. 
 



 
PLY Additions 
 
 PLY files allow for extensions within the file itself.  There are two additional 
parameters that have been added to the models: durability and inversion.  The durability 
parameter is a value between zero and one, and determines how much geometric 
disturbance a model receives from particles.  The invert parameter is either a one or zero, 
and determines the orientation of the faces – if a model is imported with its faces showing 
inside-out, flip this parameter. 
 These parameters are simply added to the PLY file above the vertex and face data.  
As an example, a simple, two polygon face is described below, with the parameter 
additions underlined.  It is defining it such that the durability will be .55, and invert will 
be set to 0.  If no parameters are specified, the defaults are .75 and 1, respectively. 
 
ply 
format ascii 1.0 
comment Example face 
element parameters 1 
property float32 durability 
property uint8 invert 
element vertex 4 
property float32 x 
property float32 y 
property float32 z 
element face 2 
property list uint8 int32 vertex_indices 
end_header 
0.55 0 
0.00 0.00 0.04 
0.00 0.04 0.04 
0.04 0.04 0.04 
0.04 0.00 0.04 
3 0 1 2 
3 0 2 3 
 

 
 More information about the PLY file format can be found here: 
http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/ 
 
 
Subdivision 
 
 As a model is eroded, it is necessary to subdivide some of its parts to allow a 
higher level of detail to show the erosion better.  A very simple form of subdivision is 
used to create additional polygons where they are needed.  When a collision occurs, if the 
polygon in question is larger than a given threshold, specified by VAR_SUBDIV_TARGET, it 
is chosen to be subdivided.  To keep the model more consistent, the polygon is not 
subdivided immediately, but rather all polygons in need of subdivision are subdivided 
after each wave of particles completes. 



 There are two modes for polygon subdivision: iterative and non-iterative.  When 
it is iterative, a polygon marked for subdivision is only divided once per wave of particles 
(that is, it is dissected into four smaller sub-triangles).  When it is non-iterative, a given 
polygon is subdivided down until its sub-triangles (or its eventual descendent sub-
triangles) are within the given threshold.  This latter method has the advantage of a more 
even distribution of triangles, as well as more consistent erosion. 
 
Simulations 
 
 A simulation can be run such that a large number of photons will be fired at the 
models in the scene, presenting the user with the resulting models after it has completed.  
The photons are launched from a field specified with the configuration variables 
VAR_SIM_X0, VAR_SIM_Y0, VAR_SIM_Z0, VAR_SIM_X1, VAR _SIM_Y1, and 
VAR_SIM_Z_1.  These define opposing corners of a rectangular field.  They can be set 
manually, but whenever a model is inserted into the simulation, these values are adjusted 
so that it lies directly above all possible points on all models. 
 The variable VAR_SPREAD_TYPE defines how the photons are released from this 
field.  When it is set to VAR (0), each photon’s position is selected randomly within the 
field, and the number of photons fired is hard-coded in at 100 – this is acceptable, 
because its use is not recommended, in favor of the alternatives.  The other types, 
ST_RANDOM (1) and ST_JITTER  (2), fire photons from a regular grid, with the latter type 
jittering the position of each, and is the recommended type.  For both grid-based types, 
the number of photons is determined by the size of the field, since the spacing between 
insertions is regular, and set to every .003 units.  This generally works fine, because 
larger models then get a larger number of photons. 
 When spawned, photons are dropped straight down.  This is based on the 
assumption that gravity is enabled.  In the tradeoff between control and usability, 
usability won, as providing the user the ability to choose how simulation photons are 
fired could become tricky, so the most common use is the default.  Further work could be 
done in making this more straightforward. 
 Photon simulations are run in waves.  By default, there will be only one wave, but 
this is controlled by the variable VAR_SIM_WAVES.  At the end of each wave, any 
subdivisions necessary are performed.  Increasing the number of waves is good approach 
to increasing weathering effects, because after subdivision has stabilized after a few 
waves, increasing the number of waves only results in a linear increase in time. 
 If VAR_SUBDIV_ONLY is set, then one additional wave is run per simulation, in 
addition to the number specified by VAR_SIM_WAVES.  This additional wave is run first, 
and it does not affect geometry or residue – it simply sets subdivision tags where 
appropriate, so that polygons will be subdivided before geometric changes are considered 
in the next wave.  This can potentially provide more accurate results, but tests have not 
been able to determine a large enough difference between both modes. 
 
 
Extending Controls 
 



 Additional actions can be created to be bound to keys.  This requires creating a 
new action identifier in control.h, and then initializing it in control.cpp.  This occurs in 
CONTROL::init(), where calls to set_primary() are made (this sets the primary key – to 
set a secondary key, you would use set_secondary() or set_both()).  This takes as 
arguments the identifier, a string explanation of the action, the action type, and whether 
or not it needs to display a waiting screen when the action is executed.  Of course, it also 
takes the key itself. 
 The action type can be CT_TOGGLE, CT_INSTANT, or CT_SLOW.  
CT_TOGGLE implies that the action will only occur when a button is pressed initially, 
and will not occur again until the button is lifted and then pressed again.  CT_INSTANT 
implies that the action will occur for every frame wherein the button is pressed.  
CT_SLOW implies that the action will occur on the first press, and then periodically will 
keep occurring a short time later, as long as the key is held. 
 
 
Extending Configuration Variables 
 
 Additional global configuration variables can be created.  A new variable 
identifier must be created in config.h, and then it can be initialized in config.cpp, inside 
CONFIG::init(), with calls to init_var().  Each variable can have certain attributes, such 
as type and whether it should require a refresh of models after the value is modified.  It is 
given a variable string, which is used to identify it and to change its value from the 
console (discussed later).  Additionally, default values can be defined. 
 Each variable has both a float and a boolean component, and they are referenced 
different depending on variable type.  A VT_BOOL only references the boolean 
component, a VT_FLOAT only references the float component, and a 
VT_BOOL_FLOAT references both (if the boolean is true, it is expressed as the float 
component, but if the boolean is false, it is expressed as zero).  Additionally, the 
VT_BOOL_RANGE functions similarly to a VT_BOOL_FLOAT, except that it can be 
cycled through a range (defined with init_var()) as well as toggled – this is used primarily 
for cycling through various modes. 
 Variables can be referenced with frame.config.get_<type>(), and supplying the 
integer variable identifier as a parameter.  Likewise, the variables can be set with the 
various CONFIG::set(), CONFIG::reset() (forces a variable back to its default), 
CONFIG::toggle(), and so on.  It is most useful to simply combine an extension to the 
configuration variables with an extension to the controls to have some key toggle or 
change a variable.  Numerous examples of this occurring can be found within control.cpp 
and config.cpp. 
 
 
The Console 
 
 Pressing the ‘~’ button will bring down the console, from which various actions 
can be executed and various variables can be modified.  Using the up/down arrow keys, 
the user can scroll through past commands as well as partial matches for currently typed 
commands.  The currently defined commands are fairly intuitive: “quit” exits the 



program, “toggle,” “set,” and “reset” are the same counterparts to the configuration 
variable functions (toggle and reset take just the variable string as a parameter, while set 
takes first the variable string and then the new value – both integer and float inputs are 
accepted), and “import_model” and “import_field” are used to import a model or vector 
field file (the proper extensions must be given, and the files must reside in the “/data” 
directory).  Filenames or variable names are given in a match list, similarly to how partial 
commands are matched. 
 
 
Extending the Console 
 
 Console command identifiers are defined in console.h.  They are then initialized 
with a given string in console.cpp in CONSOLE::CONSOLE(), through 
command_list[<COM_ID>].set(“<string>”).  Commands are then handled inside 
CONSOLE::process(), where they are given a separate case block.  Inside the case block, 
a command is given a list of arguments, inside task.argument[i].  The number of 
arguments is given with task.num_arguments. 

There are several helper functions to output errors to the user if invalid arguments 
are supplied.  more_arguments() takes the given number of arguments and the number of 
expected arguments and creates an error message telling the user to supply the given 
number of arguments.  bad_argument() takes the given argument and creates an error 
message telling the user that the supplied argument is invalid.  A common use of 
bad_argument() is, when using the “set” command, to check the output of one of the 
configuration variable functions it has to call, and if a false is returned, then the variable 
string must not exist and so a call of bad_argument() should be made. 
 
 
Vector Fields 
 
 Vector fields are read in from a file (see the specification for the .VF file format 
in the file formats section).  They specify a cubic set of vectors.  The given parameters in 
the file define the width, dimensions, and origin of the field, such that the given vectors 
are interpolated spatially through the field.  Subdivisions on this field can be handled on 
initialization through a parameter, or incrementally during execution (through the 
SUBDIVIDE_FIELD  command). 
 When a field is subdivided, its dimensions are effectively doubled, with each new 
point calculated using some given three dimensional masks.  This is more complicated 
than just interpolating the vectors, and it yield very satisfying results.  Inserting just a few 
vectors can, after subdivision, yield a very complex field – creating a 3x3x3 field with 
only four non-zero vectors, a nice vortex can be visible after subdividing. 
 The vector field can either be visualized directly, or through IBFV.  Directly, it 
renders every vector in the field as a single ray.  The color of this ray depends on the 
orientation, such that flows become more evident.  However, this can be hard to really 
discern with just vectors, and also becomes very difficult to look at when a field is dense, 
so the Image-Based Flow Visualization, or IBFV, is superior. 



 The IBFV was developed by Jarke J. van Wijk, and a heavily modified version of 
his code is included.  Originally, it was designed to only represent a two dimensional 
field, so it has been reworked to allow visualization of multiple slices of the field.  Each 
slice is orthogonally aligned with one of three planes, and can be cycled between single 
slices or all three at once.  More slices are possible, but with just three present, a 
noticeable drop in frame rate occurs, and other methods of visualization (such as stacking 
a series of slices) do not look visually appealing. 
 The goal of this field is to modify the behavior of the particles within it.  The 
impact that the vector field has on particles is defined by the variable 
VAR_PHOTON_VF_BIAS.  A low bias could simulate wind, while a high bias could simulate 
water.  If VAR_PHOTON_CONSERVE is set to false, then photons do not have any 
acceleration, and so their velocity is set explicitly by the field, which can sometimes be a 
more desirable effect.  Obviously, it is preferred to use a higher density field when not 
conserving photon velocity, because otherwise the photon movement may appear 
unnaturally blocky – not that this would necessarily have a large impact on the 
simulation.  Plus, subdividing a few times can solve this. 
 The vector field structure can handle non-uniform fields, because each element 
has a position.  However, the IBFV, as well as the particle interactions with the field rely 
on it being uniform, and the current input methods do not allow positions to be specified.  
Previous versions have been able to import such files, and the functions to do so (such as 
build_from_file() and build_from_matlab()) are still present, but commented out of the 
code. 
 A vector field can be initialized in the code itself, or can be imported while 
running.  There can be only one vector field active at a time, so subsequent calls to 
“import_field” from the command console replace the current field with the imported 
field.  Keep in mind that the imported field is created at whatever subdivision level is 
specified in its file, and may need to be subdivided further if none were specified. 
 One limitation (or potential feature) of the IBFV rendering method implemented 
here is that the actual speed of the flow is not represented.  Since the units of force have 
not been standardized, a user could enter a field with vectors of any magnitude.  Without 
accounting for this, if they are too low, the IBFV will not even show movement – it will 
appear to simply be flickering static.  Too high, and the same effect will result, because 
the offsets will translate pixels too far to indicate any continuity.  To counter this, a 
normalization has been created, which finds the maximum vector magnitude in a field, 
and scales all the vectors such that that highest vector represents the maximum flow 
speed for a good representation.  By default, vectors are normalized for the visualization 
(but retain their magnitude for their particle interactions), but this can be toggled, so the 
IBFV can render it more accurately, using the TOGGLE_NORMALIZE_IBFV command. 
 
 
Files 
 
 All files used in this project are listed below, with a brief overview note.  For 
most files, where necessary, there is more particular documentation with the files 
themselves. 
 



 Etc 
 
debug_log.txt   Regular logged output; can be disabled. 
errors.txt  Runtime errors and warnings. 
Seven.sln, etc. Visual Studio project files.  The name 

‘Seven’ is a holdover from an old 
versioning scheme. 

 
 
 Project files – Files created or modified extensively for this project. 
 
bin.h/cpp Controls how the space is partitioned.  

Primarily used for particle/polygon 
intersection calculations. 

FlowSubdiv3D.h/cpp Subdivision of vector field. 
grid.h/cpp  Rendering of grids/axes. 
ibfv.h/cpp Image-Based Flow Visualization.  

Modified heavily to deal with three 
dimensions; based off of Jarke J. van 
Wijk’s original code. 

intersection.h/cpp Efficient ray/polygon intersection 
calculations, slightly modified from 
Tomas Möller and Ben Trumbore’s 
original code. 

Mask3D.h/cpp Three dimensional masks used for vector 
field subdivision. 

model.h/cpp Everything to do with polygonal models.  
This reads/parses/creates the models, 
controls how they are rendered, how 
particles interact with their polygons, 
and how their polygons are subdivided. 

photon.h/cpp Handles movement/rendering of photons, 
which are derived from the PHYS_OBJ 
class.  This also defines the 
PHOTON_LIST, which contains all active 
photons and (perhaps confusingly) 
controls the execution of waves of 
photons in simulation. 

phys_obj.h/cpp Controls mechanical physics of 
particles.  Movement, acceleration, and 
collisions (with bounding container or 
polygons) are handled here. 

residue.h/cpp Specifies how residues are transferred, 
upon collisions. 

rply.h/c PLY file format helper functions, for 
reading/writing of PLY files.  Write 
functions are not used. 



subdivide.h/cpp Overview controls of vector field 
subdivision. 

trail.h/cpp  Renders trails for particles. 
vectors.h/cpp  Basic vector manipulation functions. 
vector_field.h/cpp Overall control of vector field 

creation and interaction. 
VectorField3D.h/cpp Structures used for subdividing a 

vector field 
 
 
 Frame – Files not associated with this project; these are here to provide a basic 
framework and utilities for the overall program. 
 
bitwise.h/cpp  Simple bitwise operations. 
camera.h/cpp  Camera movement/rotation. 
config.h/cpp Controls the visibility and 

modification of various global 
variables. 

console.h/cpp Defines the workings of the command-
input console. 

control.h/cpp Keyboard mouse input trapped and 
handled. 

define.h   Several symbol definitions. 
directory.h/cpp Directory reading. 
display.h/cpp OpenGL display issues, creating 

textures, setting up the window, etc. 
dynarray.h Simple functions for dynamically 

allocating multi-dimensional arrays. 
engine.h/cpp Engine control, mainly in the form of 

timers. 
errlog.h/cpp  Output logging. 
extra.h/cpp  Extra display functions. 
font.h/cpp  Font building and display of text. 
frame.h/cpp  Contains/orders overall execution. 
graphic_box.h/cpp Draws a rectangular box, usually 
    to contain text. 
img.h   Simple pixel structure. 
key_names.h/cpp Constructs key binding lists. 
list.h/cpp  Templated list class. 
magic_begin.h/cpp Terribly named functions to control 

some aspects of rendering.  Used to 
efficiently render many objects using 
the same texture. 

main.h/cpp Start-point of program, and definition 
of frame and logging objects. 

message.h/cpp  Outputs messages to the screen. 



overlay.h/cpp Draws 2D overlay, including the console 
and messages. 

text_box.h/cpp Draws text overlaid upon a GRAPHIC_BOX.  
Also, allows a given text box to be 
active, such that the user can provide 
input into it.  This is only used by 
the console for this project. 

viewport.h/cpp Handles division of viewports, and 
viewport-specific variables.  Each 
viewport has its own display variables. 

 
 
 Data files – Files used as input, in the “data” folder.  Some are not currently used, 
and some require further explanation, in a subsequent section of this document. 
 
.BMP    Texture files. 
 
.MSK Vector field mask files – used in three 

dimensional subdivision of these 
fields. 

 
.PLY Polygonal model files. 
 
x/y_val.txt Matlab file input for vector fields 

(not currently used). 
 
.BIN Binary file input for vector fields 

(not currently used). 
 
.VF ASCII file input for vector fields 

(active format). 
 
 
 

File Formats 
 
 The PLY file format has already been discussed.  BMP is a well-known format, 
and is simply used for input of textures (mainly used for fonts).  The formats for reading 
Matlab or binary vector field files are not currently in use and have been disabled, but 
may be used in the future. 
 The .VF file format is a very simple ASCII file used for input of vector fields, 
defined by six parameters followed by a series of data points (the exact count of points is 
determined by the dimensions of the field, provided as a parameter).  Each parameter and 
data point is handled the same – a number surrounded by whitespace, be it spaces, tabs, 
newlines, etc.  The number of data points will always be a multiple of three, because each 
vector field element has three parts: the X, Y, and Z components. 
 



 Parameters – Specified in exactly the order given below. 
 
Dimension An integer specifying the dimensions of 

the vector field.  Each field is cubic, 
so only one dimension is needed. 

 
Origin X The X dimension component of the origin 

of the vector field.  A float. 
 
Origin Y The Y dimension component of the origin 

of the vector field.  A float. 
 
Origin Z The Z dimension component of the origin 

of the vector field.  A float. 
 
Width A floating point value representing the 

overall width of the entire field. 
 
Subdivisions Number of times to subdivide a given 

field on initialization.  Useful when 
specifying a very rough field. 

 
 
 Data Points – A sequential list of data points, containing exactly (dimension^3)*3 
distinct numbers.  They are specified in X major order, followed by Y, and then Z.  For 
each point, there are three components, as mentioned previously.  An example is 
provided below (comments, including ‘//’ are included here for explanation, but cannot 
be present in the data files).  Data points are given comments representing which field 
element in the field’s three dimensional vector (in brackets) is being assigned what values 
(in parenthesis).  The use of newlines is purely aesthetic – everything could be on one 
line, only separated by spaces, or each could be separated by a newline.  Dividing each 
triplet of data points is useful, as each individual vector gets its own line. 
 
3    //Dimension – so here, it is 3x3x3 
-.5 -.5 -.5  //Origin, at point (-.5, -.5, -.5) 
.5    //Width – field is .5 units wide. 
0    //Subdivisions – none performed. 
0 1 2   // [0,0,0] => (0,1,2) 
3 1 0   // [0,0,1] => (3,1,0) 
0 2 2   // [0,0,2] => (0,2,2) 
0 1 0   // [0,1,0] => (0,1,0) 
4 4 4   // [0,1,1] => (4,4,4) 
…  //Skipping  
1 2 1   // [2,2,1] => (1,2,1) 
4 5 0   // [2,2,2] => (4,5,0) 
 
 



User Interface 
 
 There are many actions and variables available to the user, through keys and the 
command console.  Many of them are mainly for debugging or very specific use-cases, 
and will not ever be needed by most users.  The more pertinent keys and variables will be 
discussed next, through simple use-cases, to clarify the basics needed for using this fairly 
user-unfriendly program.  Previously in this document, actions and variables have been 
referred by their symbolic constant names, but here, their key assignment (for actions) or 
string representations (for variables) will be used, for easier reference. 
 On starting the program, there will be no models present, but a vector field will 
have been loaded.  A slice of it should be rendered, along with a representation of the 
XYZ axes (X is red, Y is green, and Z is blue).  To select a different vector field from a 
file, enter the command “import_field <field filename>” into the console.  To bring down 
the console, hit the ‘~’ key, and then enter your command.  To close the console, hit ‘~’ 
again.  To import a model, enter “import_model <model filename>”.  The file extensions 
must be included, and if a file entered for either command does not exist, a “bad 
argument” error appears in the messages. 
 By importing a new vector field, the previous field is overwritten with the new.  
However, when importing a new model, the previous model remains, and so multiple 
models will be present.  All models will interact with photons, whether in a simulation, or 
fired from the camera. 
 The rendering of models can be modified.  Pressing ‘1’ toggles display of 
polygons, ‘2’ the display of wireframe edges, ‘3’ the display of vertex normals, and ‘4’ 
the display of vertices.  How polygons are colored can be cycled with ‘Q’.  See the action 
CYCLE_VISUALIZATION in the Controls section for more details. 
 Pressing F2 will toggle between single-pane and multi-viewport modes.  
Whichever viewport you have clicked in last is defined as the active viewport, and will be 
used as the single pane view if F2 is pressed again.  Also, changing some display settings 
in the active viewport may only affect that viewport – for example, one viewport could be 
rendering the polygons of a model, while another renders only the wireframe.  There are 
two types of grids: 3D and 2D, corresponding to the perspective viewport and orthogonal 
viewports, respectively.  The 3D grid is somewhat confusing, and cycles through 
different orientations, while the 2D grid can be increased or decreased with the bracket 
keys (‘[‘ and ‘]’). 
 The camera is controlled with the mouse.  Holding any combination of mouse 
buttons while moving the mouse will adjust the camera.  If “camera_look” is set to 1, 
then the mouse will always move the camera when the buttons are pressed; otherwise, the 
spacebar needs to be held down in addition to the mouse buttons.  Holding the left mouse 
button rotates the view, constraining the vertical movement to +/- 90 degrees to keep 
from getting disoriented.  Holding both mouse buttons will allow the camera to be moved 
forward/backward and left/right along the current looking plane.  Holding just the right 
button will allow the camera to move up/down and left/right along the camera’s up 
vector’s plane.  It may be strange getting used to this control scheme, but after some time 
it becomes very natural to move however is desired.  Also, the speed at which it moves 
(but not rotation) as affected by the status of “fast_move” – if set to 1, movement will be 
ten times faster.  This variable can be toggled with the ‘M’ key. 



 While in an orthogonal viewport, the mouse will only be able to pan the view 
around.  Zooming is accomplished with the ‘+’ and ‘-‘ keys, or with the scroll wheel. 
 The box from which photons will be spawned during a simulation can be 
displayed with the ‘F’ key.  This is defined by the “sim_x0”, “simy_y0”, etc. variables.  
Pressing ‘Y’ will run a simulation, given the current settings and number of waves.  The 
number of waves is defined by “sim_waves”, and if “subdiv_only” is set to 1, an extra 
wave of photons is added, purely for subdivision, as mentioned previously.  Photons can 
be fired outside of a simulation, using the ‘X’ key.  They will fire from the camera, in the 
direction that it is facing. 
 Regardless of whether a photon is in a simulation or fired from the camera, 
“photon_fire_straight” controls whether gravity will affect them when they are first 
launched.  That is, if this variable is set to 1, photons will start with a gravity bias of zero, 
until they collide with a polygon.  This is most useful for when firing photons from the 
camera, because they can be aimed more easily.  Photons fired during a simulation will 
still move downward, but without the acceleration of gravity, because they are given a 
slight downward velocity.  This also has the side-effect of all photons initially hitting the 
model with the same velocity, which may be more desirable. 
 To take a BMP screen shot of the current state, press the ‘,’ (the comma).  It is 
useful to disable the rendering of messages first, to make a cleaner shot – this can be done 
with ‘N’.  The screen shot function is not perfect, however – in some instances, there is a 
strange color corruption on some polygons; the cause has not been determined. 
 The vector field can be rendered two ways – either as a series of vectors, or with 
the IBFV.  The ‘V’ key cycles through various vector-based rendering methods, while the 
‘C’ key cycles through the IBFV methods.  For each, the various methods are divided 
among displaying everything, single slices, or nothing.  The IBFV rendering can be 
modified to display a dye, toggled with ‘I’ – this dye leaves trails along each slice, 
making the flows more easily discernable, especially for static shots (the default 
rendering without dyes isn’t as obvious when it is not animated).  A strange, persistent 
bug concerning IBFVs is that they are not animated while in a multiple-viewport mode, 
but this does not affect very much.  Also, a vector field can be subdivided with the ‘.’ 
Key (the period).  This increases the detail of a field, but it also can take a long time, if a 
field is already dense – it is certainly not a linear function, so be careful with applying it 
too many times. 
 ‘F1’ displays all the possible actions and their bound keys, while ‘F3’ displays all 
the active configuration variables and their values. 
 ‘F4’ will reduce the sizes of all the bins in the world, and then will add all models 
back into these bins.  This can sometimes take a while, and is only necessary when you 
cannot get the polygons to fit nicely within the bin structure.  For example, this is useful 
if the polygons are significantly smaller than the bins, and so the advantages of the bins 
are lost.  The practical inverse of this is ‘F6’, which subdivides every polygon in a model, 
which can be useful if some polygons are too large, and not contained wholly within a 
bin or its neighbors. 
 The use of ‘F6’ is governed by the status of the “apply_all” variable .  If set to 1, 
all models will be subdivided.  If not, then the current selected model is subdivided.  The 
selected model can be cycled with ‘F10’, and which one is selected is indicated through a 
message to the screen with the model’s filename.  This isn’t very user-friendly, 



obviously.  Also, the inversion of models is controlled by the “apply_all” variable as well 
– this is done with the ‘F8’ key, and it reverses the orientation of all the polygons on a 
model.  If you find it is necessary to do this, you should modify the .PLY file with a 
different value for the “invert” parameter (see PLY Additions section). 
 Incremental subdivision has been discussed in the Subdivision section, and it can 
be toggled with ‘F11’.  Since the recomputation of the display lists for models is costly, it 
does not occur unless explicitly requested, or after a simulation is run.  This can be forced 
with ‘F5’, so that changes from firing test photons from the camera can be seen.  ‘J’ can 
be used to toggle “auto_refresh”, which forces a refresh after every change – this is 
extremely costly, but can be acceptable on very small models or extremely fast computers 
(note that this only changes how it works outside of a simulation; within a simulation, it 
is ignored).  Finally, if a model has been hit by photons, not only is the mesh moved, but 
it may also require subdivision.  Hitting ‘F7’ will allow any necessary subdivision to be 
performed. 
 
 
Further Plans 
 
 If work continues, there are many human interface issues that will require 
attention, such as better controls over the running of photon simulations and dynamic 
vector field creation/modification.  Also, there is currently no method to store the 
resulting models, but doing so would be fairly simple – the polygonal mesh would simply 
be passed to the appropriate PLY writing functions, along with any additional tags, with 
slight modifications to the PLY format to account for residue. 
 The binning system has some flaws, but there are workarounds (see the section on 
binning).  However, a hierarchical bin implementation would solve these problems, as 
well as increase the bin searching efficiency.  This would require recreating the bin 
structure from scratch, while preserving its interactions with models, which could be 
difficult at this point. 
 Some texturing, bump-mapping, and shaders could make the output models more 
interesting.  But then the overall purpose of this program would need to be re-evaluated: 
is it a tool for just weathering models, or is it also for rendering them as well?  It seems 
that storing the models in a consistent format would be a better approach, leaving the 
rendering for more able applications. 
 The actual simulation steps require more tweaking and modification.  Small 
changes can sometimes drastically increase the calculation times, so it is hard to really 
find a good balance, concerning elasticity of particles, velocities, reflectance, and such 
parameters.  And finally, the residue system would require more attention – as it is, it is 
extremely basic, and only uses the moss residue.  Specifying residues on models (such as 
rust on iron objects) would help complete its implementation. 
 
 


